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1.0 INTRODUCTION

Research being performed by the Systems Research
Laboratory (SRL) under contract number NO0O0Ol4-~-67~A~0181-0012
with the O0ffice of Naval Research is concerned with the
development of more generalized mathematical structures of ,
military processes. Emphasis has been directed to the modeling

1

of combat processes and the development of asscciated allocation i
strategies. These efforts all assume perfect intelligence, As ,
noted in the first progress report (SRL, 1969), intelligence
could reasonably have a large effect on combat effectiveness
predictions, especially when one considers its interaction
with the allocation strategy.

It Qas thought that many of the existing search and
reconnaissance theories would be useful for predicting the
amount of intelligence-gathering capability possessed by
a tactical unit. A thorough literature review in this area,
however, indicated that existing theories are less than
useful for this purpose. Most of the research efforts have
been devoted to the development of strategies for the optimal
allocation of search effort and little to the development of
descriptive models of intelligence-gathering processes. The
existing results do not consider important aspects such as
intermittent target visibility, multiple targets, moving targets,

and others. Accordingly, part of the research =ffort on this

]\
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contract is being devoted to the development of models of
intelligence-gathering processes.

The purpcse of thils interium technical report is to
present the rasults of the literature review both as a base
for our research and to indicate fruitful areas of research
for other investigators. Principal results in the field
and the techniques used in attaining them are presented in
an annotated bibliography. A comprehensive bibliography,
organized under subject classifications, is included. Finally,

some relevant areas for future research are described.
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1.1 Definitions and Notations

This section contains some basic definitions and notations

used throughout the paper.

to those specified herein will be noted in the text.

Detection -

Incremental

The act of gathering information pertaining to
thr otjcct being sought, the sifting out of
what is important information and the relaying
of that information in some efficient form to
the decision maker.

Detection Model - Let qq be the instantaneous

th scan of an

probability of detection on the i
area, Given n such scans; the probability of

detection is

n
P =1-TT @ - ap).
i=1

Continuous Detection Model - The probability of detecting

the target in the interval (t, t + dt) is given

by y(t) dt. Given continuous observance over

an interval (0,7), the probability of detection

is
T

- .f y(t) dt

P(1) =1 - e 0

Additiornal notations and exceptions




——————

Search Strategy - The decision made on the basis of information

Target

Notation:

Py

obtained from the detection nrncase., A "seoarch
strategy” will be that set of rules which asso-
ciates decisions with every conceivable result of

the deteciion process,

The object of the search, a military target, a

mineral Aespneit, or any other object about which

information is desired.

prior probability of the target being in the

ith subregion

the conditional probability of detection for
ith subregion
l-qi

the conditional overlook probability for the
ith subregion
(cl’lon’ cjltu)

a search strategy (possibly infinite) where oy

denotes which region is to be searched on the

jth trial

cost of searching the {th subregion

the time spent searching the ith subregion

-
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1.2 Classification of Detectors and Targets

Models of search and reconnaissance processes treat
detectors and targets with varied combinations of properties
or assumptions regarding their behavior. This section
presents a classification of analytic assumptions that may

be used to describe the behavior of detectors and targets.

Detectors

1. Single Detector with a Single Scan
a) Binary detection (Incremental Detection Model)
b) Interval detection (Continuous Detection Model)
1) Non-cumulative probability of detection
2) Cumulative probability of detection
(a) partial loss of information

(b) no loss of information

2. Single Detector with Multiple Scan Capability
a) Binary detection
b) Interval detection
*1) Non-cumulative probability of detection
2) Cumulative probability of detection
(a) partial loss of information

(b) no loss of information

T P T ve e aaiihendioe Y
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3. Multiple Detectors with Single Scan Capability
a) Binary detection
1) Detectors act independently
2) Detectors act dependently
b) Interval detection
1) Independent action
(a) non-cumulative probability of detection
(b) cumulative probability of detection
(1) partial loss of information
(2) no loss of informaticn
2) Dependent action
(a) non-cumulative probability of detection
{b) cumulative probability of detection
(1) partial loss of information

(2) no loss of information

4, Multiple Detectors with Multiple Scan Capability
a) Binary detection
1) Independent action
2) Dependent action
b) 1Interval detection
1) Independent action
(a) non-cumulative probability of detection

(b) cumulative probability of detection

|




(1) partial loss of information
(2) no loss of information
{(Z2) Dependent action

4 (a) non~cumulative probability of detection

(b) cumulative probability of detention

1) partial loss of informaticn

2) no loss of information

"

Targets

1. Single Target (which may be an entire group)

a) The target can exhibit binary visibility, i.e..
it is either visible or not with specified
probability.

: b) The target may have only a single interval of
! vigibility, the length of this interval having
a known probability density function.

(1) The single visibility interval can begin

at time t = 0.

(2) The single visibility interval can begin
at some time t # 0.

c) The target can exhibit multiple periods of

visibility.




2. Multiple Targets
a) The members act independantly with:
(1) binary visibility
(2) single interval visibility
(a) beginning at time t = 0,
(t) beginning at time t # 0.
b) The members act in a dependent fashion with:

(1) binary visibility

(2) single interval visibility
(a) beginning at time t = 0, !
(b) beginning at time t # 0.

(3) multiple periods of visibility. ‘

The diagram1 shown in Figure 1 presents, in flow chart
format, the various attributes of search problems and analytic
agsumptions used in modeling them., Each paper discussed in . 'uén};' ~A
this literature review can be characterized by a path through

the diagram. ; P 'TH

1.3 Orggﬁization of Review

The papers listed in the bibliography (Chapter 6) are

presented in alphabetical order under the general headings ;

1The diagram is a modification of one given by i
"An Investigation of Sequential Search Algorithms,'" Operations '
; Research, Inc., Silver Spring, Maryland, AD 657050,
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research are described in Chapter 5.

(A) General Discussion

This category includes the pioneering work of
Koopman, the applications of Mcrse and Kimball,

and the bibliographies of Dobbie and Enslow,

(B) Measures of Performance

This category includes papers which consider
various search objectives. Although it is
usually assumed that the objective of search

is the detection of the target, other objectives
such as maximizing the information gain have been

proposed and studied.

(C) Allocation of Effort in One-Sided Search

This category considers the problem of the distri-
bution of effort required to find a target when
the distribution of the target is known to the
searcher. These subheadings are included under
this category.

(1) Stationary Targets

The target is assumed gstationary although
some authors consider targets that suddenly

appear and remain visible.

P P

j T—
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(2) Large Stationary Targets

The size and shape nf +ha +arngat may havs
some effect on the formulation and solution
of the problem.

(3) Moving Targets

The target 1s moving without consclous evasion
and the searcher knows the motion or distribution

of motion.

Two-Sided Search

This category,which considers the game theoretic aspects
of search, investigates the search problem with a

conscious evader. Included in this category are the

- search/evasion problems in which the searcher and

evader can alter their motions differentially by
choices of continuously varying parameters, e.g.,
the theory of differential games as formulated by

Isaacs.

Miscellaneous

This category includes papers containing important
results in the development of search theory and
methodology or application of search concepts to

the operations of reconnaissance and surveillance.

aa
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2.0 ALLOCATION OF EFFORT IN ONE-SIDED SEARCH

The purpose of this chapter is to summarize the pub-
lished results obtained to date in regard to the allocation
of effort in the one-sided search for a stationary target.

In this context,the distribution of the target is known to

the searchc: although it may not be present at the start of
the search. The major results of investigations in this area
are presented, as well as the interrelationships batween

them, if any. Since the entire field seems to have originated
from the investigations of B. Koopman, these results will be
the starting point of the review.

Koopman (1946) describes two types of detection processes;
fher"giiﬁﬁsé"'or discrete mode, and the continuous mode. In the
former, one has a single scan or glimpse probability of detection
9 which may be functionqlly dependent upon range, time, etc.

Given n such looks, the probability of detection is determined as

n

P =1~ Tf (1-qp)

i=1

The continuous mode is characterized by the assumption that the
probability of detection in a short time interval of length dt
is given by y(t)dt. CGiven continuous searching over a time

interval of length t, the probability of detection is given by

- dj¢ y(t)dt

P(t) =1 - e

A oo e, S+ . e = e

e a
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The optimal allocation of searching effort for a stationary
target was derived by Koopman in +ha follgwing-fgzhicn:.
Let a stationary target be located in a known region A with

known probability density function p(x,y) continuous in the

region A with the properties ' ii

Min (x,y) = p > 0,
A =]

ff p(x,y)dxdy = 1. X
A N

Assume the searcher has certain constraints on the amount of P

effort, ¢, that can be allocated to the search. Consider a
search uensity function 4(x,y) defined on the region A with

the properties that

|
ff¢(x,y>dxdy = &, (1) i
¢ , ‘

¢(x,y) > 0 on A, (2)

P R P

Assume further that the searcher is operating in the continucus
detection mode. Then the probability of detecting the target,

pLel, is given by i

-0(x,y)
pl¢] = plx,y) (1 - e dxdy . (3
A
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The conditicnal probability of detection, 1 - e—¢(x,y)’
is the result of the two-dimensional "law of random search."
aenial problem 18 to determine from among all the
functions satisfying equations 1 and ? that whieh gives 3
its maximum value.

Koopman obtains the optimal solution as

d(x,vy) log p(x,y) - % J()Eog pi{x,y)dxdy + o/4,
A

for

(%,v)e ﬁ,
and

d(x,y) = 0 for (x,yde A-A,

where

[f log p(x,y) dxdy + 2 =

A ={(x,y)lp(x,y) 2b s logb -
, A A

B>

By considering A = A1 + A2 + "'An’ one can obtain the solution

to the n region search problem. Some generalizations suggested

by Koopman, include the case of visibility varying from

1

position to position, the case of weighting the probability of

detection by a function dependent upon where the target is

detected, and weighting the search density funetion by a cost

function dependent upon the region be .ng searched,
Charnes and Cooper (1958), develop an algorithm for the

solution of a discrete version of Koopman's problem.

e MK o iR

Ry
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Let {Pj}. j =1, 2, *++, N denote the probability that the
target is in the jt‘Ll region. Then if'{¢j}, =1, 2, ***y N
denotes the normalized search density vector, Koopman's

problem becomes

N
Min ; Pj e-B¢j ’

N
3=1

and Pj > 0, Pj =1,

where B is a scale factor relating the allocations, ¢j’ of
search effort to the total amount of search effort available.
The algorithm is obtained from the application of the Kuhn-
Tucker conditions for optimality to the above convex programming

problem.
The detection processes in Koopman's formulations

were quite restrictive. de Guenin (1961) generalized these

processes as follows : Let p[9(x)] denote the probability of
detecting the target with an effort ¢(x) when the target is
at x. The following assumptions are made with respect to

plo(x)],

(1) plo) = 0

(2) p'(¢) = >0

(3) p'($) = a decreasing function of ¢
(4) p'Ce) > 0, p'(®) = 0,
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From the above properties p'(¢) admits of an inverse function

¢ = f{p’'). The basic problem becomes
Max P = f g(x)plo(x)Jdx
-0
S.T. ¢(X) _>_ 0
-]
f p(x) = &,
- 00

where g(x) is the probability density function for target
location. de Guenin derives the following necesgary

conditions for optimality under the above assumptions.

Theorem: A necessary condition for p to be optimum is that

at any point x such that ¢(x) > 0,

glx) p'ld(x)] constant

¢
g(x) d¢/dp)

where d % dp = the marginal effort to increase the detection

constant,

probability. One might restate this result as follows:
Whenever the distribution of effort is optimum, the
marginal effort required to increase the detection
probability at any point is proportional to the proba-

bility density, g(%), of the location cf the object.
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Koopman (1946) observed that the distribution which
maximizes the detection probability with a given amount of
effert has the interesting property that it is the sum of
conditionally optimal distributions. That is, the optinmal
distribution of E, + E, is the sum of the optimal distribu-
tion of El and the conditionally optimal distribution of E,,
given that the target has not been found with the previous
distribution of El' Dobbie (1963) develops sufficient con-
ditions for this additive property to hold, then shows that
the solution to this class of problems can be attained by
"optimizing conditionally in the small." Let p(x,f(x)), be
the condtional probability that a target at x will be detected
by the searching effort of intensity f(x) at x. If the de-
tection rate, k(x), is independent of the searching effort

f(x), then Dobbie shows that
P(x,f(x)) = 1 - expl-k(x)f(x)].

Furthermere, it is also shown that if QR%?fil is a positive
monotonic non-increasing function of f for every x, then the
distribution obtained by maximizing the probability of detection
in-the~-small will maximize the overall detecticn probability.

It is also shown that the expected effort required to detect

the target is given by

E = f Q(E)HE = f (1-p (E))dE,
[} [*]

l‘ N

P S
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p(E) is the probability of detecting the target with effort
Afetr hutad scoording 2 & pairticuler distributior trunction.
From the above equation, one can see that the expectecd effort
is minimized by always distributing the effort to maximize
the probability of detection with the effort expanded thus
far., 1In contrast, the distribution that maximizee the proba-
bility of detection with a given amount of effort can be
non-optimal for all valies of effort less than the total, as
leng as the schedule attains the final distribution when all
the effort has been applied.

Pollock (1960) introduces a discrete search model for

two regions and determines the optimal sequential strategies

>

for this model. A single searcher is given the a priori
probability P that the target is in region 1. Conditional
detection probabilities q, and q, are also given. It is

assumed that each glimpse in either region takes ons unit of

time., As the search progresses, the a posteriori probabilities

are obtained using Bayes' theorem. For example, suppose the
searcher 1s unsuccessful in his look into region 1, the a
posterjori probability that the target is in that region

is given by

(1-q.)
p' = .—.il_g
l"qlp

A e a ok £ e SR w4 sy e 1o e A
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Similarly, the a posteriori probability of the target being in
region 1, given an unsuccessful look into region 2, is
P

p' = .

Lzt the expected length of search using an arbitrary strategy

be denoted by E(p), whers

l'ql P
1+ (1-q.p) E :  Start in ¥l
- l‘qlP
E{p) = <
1+ (1-(l-b)q2)E ——te — ) : Start in #2
L l-(lvp)q2

Pollock shows that the optimal sequence of looks: is.

determined from the followihg canditioné: .Let § dencte the
"ourrent" estimate of the probability of:the target being in
region 1, the selection of the next region to be ééarched is ..

accomplished via the rule:

"For p > q2/(ql+q2> look in box 1, otherwise

look in box .2."

The optimal value of E(p) under the above strategy is determined
via a "bootstrap" technique of extending the region in which the

optimal value of E(p) is known.

ot e
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In comparing the optimal values of the expected length
of search between the discrete and continuous models, Pollack
observed that for small values ol q they are.very close.
indeed; hecwever, as g+1 they become quite different. He also
observed that the criteria of (1) maximizing the probability
of detection by the end of a fixed time; and (2) minimizing
the expected length of time until detection; lead to the same
results for the allocation of effort.

Gilbert (1959) considers the continuous version of the
two-box search problem including non-zero switching times.,
First, he notes that in general, search, under the assumptions
made up to this point in our discussion, may be compared to
& one~-person game. Although not solvable as such, he éoncludesi
that all attention should be restricted 'to pure (deterministic)
étrategies, rather than mixed (probabilistic) strategies. He
also notes that with p = 1 - p = 1/2, and q,(t) = q,(t) = 1 - e~t,
it is optimal to switch from one box to another.whéﬁgﬁéﬁ?the box
beiné searched has received a longer time of sé§~é5'%£g§¥the
other box. Then, by switching from box to box Pdfid;yiénough,
one can get expected search times as close to twdimé'aesired.
This leads to the definition of a "limit strategy," which will
approach the true optimum strategy in the limit as switching
becomes instantaneous. The limit strategy is defined as a
pair of monotone non~decreasing functions x(t) and y(t) such

that

o A At NS Gt IS i s X siea”

s

e e
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x(t) + y(t) = t, t >0,

#{i) and y{t) are interpreted as the times which will be
spent (using the optimal strategy) searching boxes A1 and A2
respectively when a total time t has been spent searching.
The probability Q(x(t), y(t)) is defined as the prcbability
that A1 and A2 can be searched for times x and y without
detection, then

Qx(t), y(t))

pﬂtl-ql(x)J + (l-p)[l-qQ(y)],

-0 xX
l""e l 9

ql(x)

-0,y
1"6 2 .

qz(y)

Since the distribution function for the time spent searching
is 1-Q, the optimai strategy is that (x(t), y(t)) whiech
minimizes

®

©0
'/ tdQ(x(t), y(t)) = / Q(x(t), y(t))dt.
o o

The solution to the above problem yields the strategy:

(a) For (l-p)a2 >2p al,first look in box 2 for

1n (l-p)a2
2 pay

le—a

units of time, then follow the

limit strategy

alp

a.X = a,y + 1ln
1 2 a2(1-p)
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(b) For (l—p)a2 < pal,first look in box 1 for

. P
1 1 : :
EI 1n E;TT:ET units of time, then follow

the limit strategy.

Allowing for a non-zero switching time 8, the strategies of
interest become those which follow "staircase!" paths in the

(x,y) plane. If switches occur at the points (xi,yi), i=1,

2, ***, then the expected search time of a strategy is

E = f Qlx,y)(ax + dy) + E E Q(xi,yi)
i=1

where the integral is a line integral taken along the staircase

path. Gilbert develops the following theorems pertaining

to this case.

Theorem Let C be a line segment between two switch
points (xi, yi) and (xi+1’ yi+1) of a mini-
mizing strategy. If C is horizontal, there
must be points on C at which Qx - Qy < 0.
If C is vertical, there exist points of C

at which Qx - Qy > 0.

Taeorem Let p = 1-p = 1/2, ql(t) = q2(t) = g(t), and
let the distribution function 1 - q(t) have
mean T. Then bounds on the minimum expected

time E, are given by

PPN PO

ke e
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T + 8/2 < Eo < 2T + §/2 + 28T .

The above theorems will yield the optimal solutions in

=X and |

special cases. For the case in which 4y = l-e
q, * 1-e™Y, Gilbert determines that the switch points ,

are (w,o0), (w, 2w), (3w, 2w) where w satisfies the equation {

+w. = sinhw P
S o lnh o [ |

and the minimum value of E is Pl

2 .
Eo = 1 + cosh (w°/2). ;;

However, these results will not yield solutions in more
general situations., .Kisi (1966) obtained the same result
independently using somewhat more direct arguments. D
Blachman (1959) considers the following variation of the.
search problem formulated by Koopman. The object is not present :
at the beginning of the search but has a distribution of
arrival times, and the aim is not to maximize the probability
of detection but to minimize the expected delay between arrival
and detection. An object may appear in any one of n locations
and will thereafter remain there, the probability of the ith
location being p;, with ) P; = 1. The time of appearance of
the object is distributed uniformly over a long interval of

th

length T. A look in the i location takes a time ty and, if

the object is there, the lock detects it with probability Q-
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The basic question is: In what order should the various
locations be scanned during the time T to minimize the
expected delay betwaen the appearance of the object and its
detection? The search pattern is characterized by the inter-
vals Tij between the beginning of the (j-l)st look in the

ith location and the beginning of the jth. Ti1 is defined as
the interval between the start of the search and the first

th location. It is assumed that the target will

look in the i
not appear before the start of the search.
For a given search procedure, the expected delay between

the arrival and the discovery of the object is

(W)
N i I 4
't - P_ t + T-. o k
1 i 1 T' + [« T- a
i=1 i=1 L - ici+x) |,

th

where Ji is the total number of looks in the i location and

o; = 1-qi is the probability of failing to detect the target.
The procedure is to choose positive quantities Tij that minimize

the expected delay subject to

E Tig =T (1 =1, 2y, *++y n),
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Minimizing the expected delay subject to the above constraint

yields, treating Jy as fixed,

T
Ty 7 ogy (2 3= Ji'l)

1

u
[T
1
[

-
<

under the assumption that T is great enough so that all Ji

are large. The optimum expected delay is given by

N
T
) A 1 1
P e [t“Ji (qi”’)]' K

i=1l

To determine the optimum Jys (5) must be minimized subject

to

N
Z Jyty = T

i=1

The results of this minimization are:

Pi f1 1
(a) J, = T - S - =
i t; (tqi 2 )

2o

1

o=
1
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LTI [{K ‘lnm. /L--%\ ]2 .
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In general, i+ is not possible to arrange a search ﬁattern
that satisfies the above conditions for all locations, because
the condition that "looks" in different locations must not
overlap, has not been taken into ac¢count. Hence, one can
conclude only that a search pattern which approximately
satisfies the above condition is, at least, approximately
optimum.

Blachman and Proschan (1959) consider the- T llowing
general search problem. Objects arrive in accordance with
a Poisson process, the rate of arrival béing A, Haviﬁg
arrived, an object appears (and remains until detected) in
box i with probabilitv p;. A single scan of box i costs
cy (possibly indluding the cost of false alarms), takes time

t;» and, if the object is present in box i at the beginning

of the scan, will detect it with probability q;+ The resultant

gain, g, (t), i = 1, 2, ***, n, is a non-increasing function of,
t, the delay between arrival and the beginning of the detecting
look., Considering only cyclic search scheduler, i.e., search
schedules which repeat after D units of time, where D is arbi-
trary, the authors derive the optimum search procedure. The
expected net gain per unit of time from f; regularly spaced
looks per unit of time allocated to box i, i = 1, 2, ***, n,

is given by

Ch
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The problem is to maximize the expected net gain subject to !l
1
i

D oft <l £20, (=l,2, 000, .

The solution te the above problem is obtained as follows:

- fy(p) = 0 if riCO).; r o _ [
fi(r)ez @ Af ‘(=) > roT »
: : j i
‘fi(r) = fi such that ri(fi) =1, otherwise, |
where
{ dar,
1 i i
P-(f-) = _— : .
itti ty \ 3?;
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Also define

F(r)

o
H
|
-~
]
rt

and
| I ]
fi firt),
The major result of this paper is the following theorem:

Theorem:

l, 2, **+, n) maximizes I' among

P
h
[N
=
N,
~
-
n

£, } i=1, 2, ''', n satifying
N
Z £it 5 1
i=1

In the foregoing discussicn, the optimal schedule was obtained
by ignoring conflicts among boxes, however, the authors show
that by taking n sufficiently large, and at the same time the
P; ti’ cy correspondingly small one can always produce a
conflict-free schedule with the expected gain per unit of

time as close as desired to

e e i e Sl




(o)
[

re = T(fl*, trhy fn*).

Some additional results obtained in this paper ineclude:

(a)

(b)

W (e)

In considering how best to schedule gecans in any
one given box (ignoring all other boxes, for the
moment), the optimum schedule calls Ffor scans

uniformly spaced in time.

The following theorem provides a sufficient condi-
tion for answering the question: Under what circum=

stances should a given box be searched?

Theorem:

If Jf tdg, (t) = - =, then,fi* > 0,

(=]

By taking the gaih'function to be the negative of

the delay between arrival and detection, i.e.,

gi('t> = - (t"' 'ti)) i = 1’ 2, "', Ny

the optimal frequency, fi*, is shown to be proportional

to

Ve (&)
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Matula (1964) derives conditions for the existence of an
ultimately periodic search program in the following context:
An object is in one of a finite set I of possible locaticns,

l. Associated with

with a priori probability Py P;
©od=I

each location i is a cost for searching that location, ¢y

and an overlook probability, Gy if the object is in i and
i is searched, it is not detected. The problem is té6 find
a program o = (g(l), o(2), +++), i,e,, a sequence of locations
10 be searched such that the expected cost, v{o) of finding
the object is minimal. A program is called ultimately periodic
if 6(j + 8) = ¢(3) for all j > T, where T denotes the length
of the transient phase and 6 the length of the period.
The major result of this paper is the conditions for
the éxistence of an ultimately periodic optimal program as
well 28 the minimal period and the minimal transient length.
It is to be noted that the general dynamic programming solution

gives an optimal program recursively, whereas the results of

this paper have the advantage of yielding a closed form expression

and require evaluation of only the first T + 8 terms. In addi-
tion, a periodic optimal program yields for the expected cost
a power series that is algebraically summable in closed form.
The results of the paper are summarized in the following
assertions:
Lemma Tf o is an ultimately periodic optimal program of

iransient length T and periocd 0=}E: ng where n; is the
i=T

e bt ] s St S K =P L S i s e ¢
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number of searches of location i per period, then

n, n
i i

o, = oy for i, J e I.

Corollary A necessary condition for the existence
cf an ultimately periodic optimal program is that the

set of ratios

log ay //i/ i (i,3) e I
og ay

consist only of rational numbers.

Theorem: For the search problem where the ratios

log oy
log aj

are rational numbers for (i,j) € I, there exists a program

% such that

(a) o¥* is ultimately periodic of period 8 and transient

length T, where

jel

= mi t|p! v : P
8 = min {6 |6' and e//; (log ui)// (log a,) 3re 1ntegerj‘
jel J
T = z: min nfe.? q. p/: < min
fer | nroa1,2,00 { oyl

{quj’“j°j}}
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(b) o%*is optimal
(c) © is the minimal possible period
(d) T is the minimal transient length.

Combining the previous results, Matula obtains:

Periodic Search Theorem:

A necessary and sufficient condition for the existence

of an ultimately periodic optimal program is that the ratios

{log ai//&og aj} (i,9) ¢ I,

all be rational.

It is interesting to note that the limiting frequency of
search of a location for any optimal program depends only
upon the overlook probabilities, not on the initial probability
distribution or even the relative costs,

In the fellowing example, due to Klein (1968), one can
note the more detailed structure of the transition mechanism.
Klein considers the following problem. An object moves about
within a finite number of regions, one per time unit, according

to known probabilistic laws. A single searcher, using a de-

tection system whose effectiveness is a function of the amount of

effort used and the region searched, checks one region at a
time until the object is found, his budget effort is exhausted,
or he decides that it is "uneconomical" to continue. The

problem is to find an optimal sequential search policy, i.e.,

L A e e mA o e




——— oy —

~———

3y

one which tells the searcher, at each point in time. whether
to search, where to search, and how much effort to use. It is
further assumed that the target's movements are independent of
its location and that the searcher is "noisy" enabling the
target to base his movements on knowledge of the searcher's
location at the end of each period. The following assumptions
are also made:

(a) L + 1 regions are to be searched, 0, 1, *-*, L.

(b) The searcher starts in region 0 (the base) and the

object is in any region. The budget, of size B,

consists of a finite number of discrete units.

The two classes of states and their associated labels are

defined as:

(1) ibo, region i has been searched, 0 =) unsuccessfully,
and b units of the budget remain for further use,

(2) ibl, same as above, except 1 =%successful search.
The state space of the decision process is given by

S = { idy 420, *r0, Ly b= 0,1, ***,B-1; a=0,l} u go;} ,

o]
where 0B is the initial state.

It is assumed that the target discovers the searcher's
location at the end of each period. His evasion strategy,
based on this information, is assumed to be randomized and

represented in the form of a stochastic matrix
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’ .
H=‘hij},
where i denotes the searcher's current location and j the
target's next. Then, corresponding to each searcher position
(i), the target moves to position j with probability hij'
Note that this implies that the target's ability to move is
independent of its location. This may not be true of the
searcher's mobility. The effectiveriess of the searcher's
detection process depends upon the region searched and

the amount of effort used, i.e.,

vj(e) ¢  probability that a search of region j
using effort e will find a target if it
is in the region.

After each determinaticn of the current state of the
decision process, say 1%, the searcher chooses a decision,
je’ from a finite set k(ig), i.e., the searcher chooses the
next region to be examined (j) and the amount of effort to
be used (e = 1, 2, ¢*+, b). It is assumed that the decision

is made with probability d(iY,j ). The process is controlled
b’-e

by a randomized stationary decision rule (Derman (1962) has

shown that attention may be restricted to this class of rules):

D = {d(ig, 3o) } , d(ig, ) 2 0.

e e A R 7 b by A YA i barn S e
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The problem is +n selant an o

from the class
of all randomized stationary rules. Next, the stopping states

for the chain are defined as follows:

(a) 1let A equal the set of all states in which
the target is found

A={il];;i=0’ .“,L;b=031’ "’,B"l},

(b) 1let G equal the set of all states in which the budget

is exhausted,

G={igii=0-""L}’

then T = AUG is the vomplete set of stopping states for the
chain, It is also assumed that the Process starts in state

o
Ogs with probability 1. The transition probabilities for a

~ the controlled chain, p(ig, jg) follow:

Let r&j =1, 2, **+, be the travel effort needed to go

from i to j; then, for all integers b,f: 0 & f = b-e-ri. < b < B,

0 g o L o 1
P(lbg jf) hij Vj(E)d(lb, Je), lb [ S"T, Jf € A,

,0 o ] , 0 ,©
P(lb, ]f) 1l - hij vj(e)] d(lb, je)’ i, e S-T, Jf € S-A.
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The chain, as defined, is absorbing by virtue of the stopping

siaies T, 1t 1s made cycliic by forecing its return to the ‘
{

starting state (OB) whenever the set T is reached, i.e.,

-]
PG, 0p) = dUf, 0p) = 1for il e T.

This new chain consists of, at most, one ergodic class of

states. The following cost structure is introduced: c(ig,je)

C fe A e« e AN i S e T

denotes the cost if the system is in state ig, at the end of a

period and decision j_ is made; that is ; !

O s - . _
c(1b, ]e) = e + rij’ iy ¢ S-T
clip, 30 = 0 , iy e T,
The total expected cost is given by
T(D) i #
QD) = 4
where t(D) is the random number of periods taken by the process t

to reach a stopping state using a specific rule D. Let

g e S represent the (unique) steady state -proba-

n(x ) i
bilities of the controlled chain (note that the 7w's will be
functions of the decision rule). The total expected cost can

be written in the form

Q(D) = ["(o y - ]za: Z (i ) d(ig,je)c(ig,je),
5 3
b
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]
where from Markov chain theory l/w(OB) is the mean recurrence

time for state OB and

E(T(D)) = =3 -1
w(OB)

is expected duration of the search. A successful search termie-
nates in class A, hence the probability of a successful search

using rule D is

P(D) = W%? E 11,

. O
1bcA

Klein offers the following objective functions for consideration:

(a) min QD)

{D} :
8T, P(DY > @

(b) max P(D)

“{D}
(c) min E { t(D}
{D}
S<T. P(D) > ©
(D) < T
(d) max P(D)
{D}
$,T. E(r(D) > A
Q(D)y < T .,

Formulation (b) may be solved using dynamic programming, the
other formulations can be transformed into linear programming

problems by utilizing the techniques described in Derman (1962),
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Pollock (196u4) develops search strategies to minimize
the expected cost of search which are sequential in the sense
that a decision at any time is dependent upon what has been

observed up to that time. The search process is represented

in terms of a stochastic dynamic program including consideration

of false alarm probabilities. The optimal search strategies
as well as the associated minimum costs are given. The state
variable, the probability that the target is present, is ad-
justed by Bayes' rule after every observation. It is shown
that the optimal sequential strategy is similar to the Wald
sequential probability ratio test. The target is assumed
stationary, although if the target is not yet present in the
region of interest, it has probability A of arriving in each
successive time interval.

Kadane (1968) studies the problem of choosing a strategy
to maximize the probability of finding a stationary object
when a budget ceiling is imposed. It is assumed that the

. th

probability of overlooking the cobject in the j search of

box K, given that it is in box K and has not been found before

h

the j.t search of box K, is a function, sy of j and k alone.

th search

Therefore, the (unconditional) probability that the ]
of box K is conducted and is successful is 0 if the strategy
does not include a jth search of box K, and is

k ’ ’ u‘j'k(l - ajk) = ijl

i'<d
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where P, is the probability that the object is hidden in

h

box K. Let Ejk be the event that the j't search of box K

is conducted and is successful and
ij = probability that the event Ejk40ccurs.

Let o denote a search strategy, then the probability of
finding the object using o is E; ij, ij is to be included

in the summation if there is a jth search of the k!

box in o.
The simplification and extension achieved in this paper are

a consequence of the possibility of restricting the discussion
to the unconditional probabilities of these mutually exclusive
events Ejk' It is possible to compute the conditional proba-

bility that the j'th search of box K will be conducted and will

be successful, as,

where § is the set of searches conducted up to this point.

Let the jth search of box K cost c,

3% Then the largest

cost one can occur using strategy o is

2: Cjk

where S5y is included in the summation if there is a jth search

of box K in o. In short, a strategy is sought to

MAX ; ij

[ TN

PP, S I
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subject to

2, o 2O

o)

with the usual remarks corncerning the extent of the summations.
The author extends the NeymansPearson Lemma to neasures
of arbitrary total measure. The theorem is stated as follows

( B= z:cjk over all positive ij):

Theoremn:

Let {Pi} and {ci} be arbitrary non-negative sequences

such that 2: Pi < =, Let X be the class of sequences Ry
D i )

g :E: Xipi‘- o o _ ~\T\v;'
subject to . . ST :3f-ff“ﬂ‘ .

:E: X;e £ C

1

such that 0 < x;, < 1,7V qAf 0 < C<B, then-the maximum of .

and x; € X is attained, and it occurs when and only when

1 if Pi > rc,
R, = o (6)

0 if Pi < rci

for some r, 0 < r < =, and
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™ <
x and is a single point or a closed interval. The author
describes an integer programming algorithm (branch and bound
variety) adapted to the problem of finding the object subject
to a budget ceiiing C when discreteness is insistodvupon.l

The impli;é#iopé_df the previous theory towards the problem

of mﬁnimizing thé_eupgqtéd'qost are summarized in the following
nesﬁlts. |

| Tﬁe author défines_a get of searches to be locally

obtim&l if the inclusion of (j',kx') and exelusion of (j,k)

implies

; Oj'k' ik

.. The following theorem is given:

Theorem: Let ij/‘cjk be non-increasing in j for each k. Any|

locally optimal feasible strategy including all"

searches for which ij # 0 minimizes the expec¢ted B

cost of all unsucocessful searches plus half the cost -

of the last, successful search. Such a strategy

lFor ¢ =1, k=1,2,""*yNy Chew (1967) gives basically the
following optimal sgtrategy: To maximize the probability
of finding the target in a fixed number, N, of searches,
choose those N searches (j,k) for which Pk ai'l (l~ak) N

largest.
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exists if and only if

{a) 1In ail boxes K for which ij # 0 for all j

where b > 0.

(b) If b is positive and ij cjk = b for some (j,k),
then for every sufficiently large j, ij/éjk is

b or 0 in each box.

(e) ij/éjk > b for all (j,k) such that P,

Sk £ 0.

Black (1965) presents a graphical argument for the optimal
sequential search procedure for the following problem: A
stationary target is in one of n regions. It is in region i
with prior probability P;y a look in region i costs c., and

the target can be overlooked with probability uge

P(X)

probability that the target is found on
or before kth look,
c(k)

total cost of the first k looks, and c

the random total cost. Then the expectation

of ¢ is
[ -]

E(e) =2  (c(kimc(k=1)) (1-P(k-1))  (7)
k=1

m ke e

Py

WA NN
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which is obtained from

E(e) = lim S clk) (P(k) - P{k=1)) + c(N)(1-P(N)). :
N-+w Kol s

Black then plots P(k) versus C(k) as in Figure 2.
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Figure 2
Probability of Detection in K Looks

As shown in equation(7)the expected cost of a search using
this policy is equal to the shaded area. It is noted that
all policies with finite expected cost have the same triangles
in their probability-cost plet, with cnly their order changed.

The heights of the triangles are given by

n=1
and the base by ¢;+ Clearly, the policy that places the
triangles in order of decreasing steepness is optimal, if

it is feasible.
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Consider all the numbers

N e e o+

n
Picl-ai) ai

Cy

arranged in a two-dimensional array. Note that the

n=-1
Pi(l-ai)ai

s

e R R PRIGRPRRHI Wt ST S e

are monotone decreasing in n.

It is observed that the application of Bayes'rule shows
that the policy with minimum expected cost is identical with

that generated by the rule:

"Always look in the region for which the posterior

probability (given the failure of earlier looks) of
finding the object divided by the cost is maximum."
Since the logarithm is monotone increasing in its argument,
one can construct the optimal policy by arranging the numbers:
log P; (1-a4) t+ (n-1) log a;
s
in decreasing order. Viewing these numbers as points along

a line, the points corresponding to any particular region
will be equally spaced. If log a; are commensurate, the

optimal policy is eventually periocdic.
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Renyi (1965) considers the following search problem: let
SN be a finite set having n > 2 distinguishable elements.
Suppocse one wishes to find an unknown point X of the set SN’
It is further assumed that one cannot observe X directly;
however, one may choose some functions fl, f2, ey fk from
a given set F of functions defined on SN, and observe the
values fl(x), fz(x), N fk(x). It is assumed that F contains
M functions, M < n. A strategy of search is a method for the
successive choice of fl, f2, LI fk’ which leads to the deter-
mination of X, The usual definitions of pure and mixed strategies
are applied to the choice of the function fl’ f2, vy, fk' The
author attains some general theorems concerning the duration of
a search using random search methods, and it is shown that, in

general, these random search methods are almost as good as the

best pure strategy, and are usually much simpler.

Miehle (1954) discusses numerical techniques for determining
the optimal distribution of effort under constraints. In par-
ticular, one has various types of effort to expend on corres-
ponding tasks applied towards a desired result. The effect is
represented by E(xl, Xps ' xk). In particular, Miehle studies

the case in which the effects are additive, i.e,,
E(xl, Xps 'ty xk) = fl(xl) + f2(x2) + ..t fn(xn).
The objective is, of course,

Max E(xl, 52, tery xk)

S.T. 2% < C,
X; 2 0.

-e
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array, the columns of which represent the efforts By "0y %y

and the rows the allowable allocation to each effort tvpe

ranging from 0 to C, for the maximum value of E(xl, RKps "t xk).
Staroverov (1963) considers the following search problem.

h

A point is located in the ktP ce11 with probability Py E Pk = 1,

One cell is inspected per unit of time; if the point lies in the

cell being inspected, it is discovered with probability q > 0.

The results of such investigations are considered independent.
Let 9y denote the number of the cell being investigated at time
t, 1f the point was not discovered up to the time t-1., Let

o = (cl, orry ct,---) denote the search strategy and T, the

time required for discovering the point., In this paper, a

procedure of searching, o%, is determined so that

E(Tgw) = inf E(T).
a

Arkin (1964a) extends the results of Staroverov and
considers simultaneous search of a number of cells. Explicit
formulae are given for the optimal strategy of search and for
the corresponding distribution and mean value of its duration.

In another paper, Arkin (1964b) considers the problem of
obtaining uniformly optimal strategies in the context of the
stationary search problem. The a priori distribution of a
particle in R" is given by the density function f(x). The

search strategy is defined by the function




g

g = olx,t), g 20,

/' o(x,t)dx = 1.

mn

Let PU(T) denote the probability of finding the particle using
strategy o during time T. A strategy o* is uniformly optimal
if
PO*CT) = sup PO(T) for any T > 0.
o

In a very general case, the author proves the existence of
the strategy o% and is able to find its explicit form.

Chew (1967) considers the following variation on the
stationary search problem. Let the a priori distribution
of the object's location be denoted by'{Pk), X = 1, 2, susy N,

where

E P ® 1=q¢ <1,
k
t

Since in this cuse the search has a positive probability of
never terminating, one must couple a stopping rule S with any
search procedure 0. A loss function is defined by impoesing a
penalty cost (¢ > 0) on the searcher for stopping before the
object is found. A procedure (o, S) which minimizes the
expected cost to the searcher (i.e, which yields Bayes' risk)

is derived.

et S e e T o e s Bt e saes | ) i
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MacQueen and Miller (1960) deal with the problem of
whether or not a search aclivity should be started and, if
started, whether or not it should be continued. Their model
gives rise to a general functional equation for which existence
and uniqueness conditions are given.

Gluss (1961) considers a model in which there are N neigh-

boring cells in one of which there is an object that it is
required to find., The a priori probabilities of the object
being in cells 1, *** , N are Pys 't PN respectively, and
the costs of examination of these cells are Cys *rey Cpe The
search policy is considered to be optimal when the statistical
expectation of the total cost of'éearch is minimized. It is
assumed that costs comprise a travel cost dependent upon the
distance from the last cell examined, in addition to a fixed
examination cost. It is assumed initially that the searcher
is next to cell 1, c; = i + ¢, where ¢ is constant, and from
then onwards (assuming that the j'th cell has just been examined)

c; = |i=3] + c. An optimal search strategy is found in the case
where the Pi's are 21l equal, and an approximately optimal search
strategy is found in the case where P, is proportional to i.
The latter case has application to defense situations where

complete searches occur at successive intervals of time, and

hence the enemy objects are thinned out the nearer they come

to the defense base.
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Pellcck (1383) cousiders a target moving in a Markovian
fashion between two regions. The objective funtions for the
standard problems of the minimization of the expected time |
until detection and maximization of the probability of de- ;
tection under a constraint on search effort are derived. For P i
certain special forms of the transition matrix, decision rules !
are derived for the minimum expected time problem. Upper | i

and lower bounds are also derived for the minimum expected jl

time problem.
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Neuts (1963) develops, among other things, stationary
minimax strategies for a multistage search game., A stationary

strategy for the hunter is an n-tuple

y = (yqs T v
!
n
¥y >0, Z yi = 1,
i=1

which denotes a probability distribution, chosen once and

for all, and by which the region to be examined at each stage
is selected. A mixed strategy for the stationary target is

an n-tuple x=(xl, caey, xn), with Xy > 03 (i =12, 2, *'*,n)
andjg1 xj = 1, X, denotes the probability of the target being
in the ith box. If the searcher uses the stationary strategy

y and the target the mixed strategy x, then the expected return

to the target at each stage of the game is given by
n

Alx,y) = 3y, (op-aqux),
k=1

where,

¢, = «cost to the searcher for a look in region i

q = probability of finding the target given the
correct region is searched

a = reward to searcher for detecting the target.

et A ok et et
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The probability p(x,y) that the object will be found during

a given search equals:
n

plx,y) = E : qukyk.
k=

The discounted expected return to the target during the entire

search is given by

(-]
Fix,y) = z : §° [1 - p(x,y)]r Alx,y)
r=0

- Alx,y)
1=8[1=p(x,y)]

Denoting by x° = (x1°,"', xn°), ye = (y1°,'-", yn°) and %%
respectively a pair of minimax strategies and the value of

the game with payoff F(x,y), one must have
F(x°,y) 2 Vs for all y,
F(x,y°) < Va for ali X

Neuts obtains as the solution to the above formulation:

'n -1

Ve = %k -a § + (1-6) E =
k=1 U k=1 *
%.0 = ,'1__ CJ - (1‘6) VS - ) .
i qj a * V.8 3 =1, 2, s T

[E—
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J i=1, 2, ***, n.

Note the independence of y° (searcher's strategy) of all

e

yi©

nla
.Cl’l—'
ey

parameters except the detection probabilities Qe ¢

The same remark holds for the expected duration of the

o K-1 ' | _f¢

=
"

k=1

"

1
k=1 |

Tt should be noted that stationary minimax strategiés correspond }R

P

to the following cases:

. , _ - i ST i
(a) a memoryless searcher . . D ; S

(b) the target is allowed to. move after ST e i. :
each region is searched. - L o o

Let ='(xl}"*°, xn) denote an arbitrary mixed strategy f&r'l
the ‘target. Suppose one is interéstéd iﬁ determining the eptimum-
sequential response for the searcher against x and for the mini-
mum expected loss. Bellman's principal of optimality implies

that the following functional equation must be satisfied

fglx) = min {ci - a qux; + 6(1-qixi)f6(Tix)}
liiin
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with
c; >0, 0¢gq; <1, 0<6<2, a20and

Tix CIEE A (cl’ rry t-n>

defined by

1w q, "
. AR
LT 1 - qg,%
‘ 43%4
Ly ® : 4 d
] xJ k. 3 i

“‘Thﬁ nntup]m 13 is the a puatariovi ansrributicn derlved from X,

,given that ona unuuccessful search of box i was madt. For'

0« L < 1y Be;iman (1987) sattles the questlona of existence,

'-Uniqueness. and.continuity of the solutlon of the above func-

BT

\'t;ohai equatlon. Neuts obtains the followmng rbqulte on this

equaiion for 5. i. Let fn+1(x) be defined by

1(x) = min [Ci -.aqixi +6[1~qixiJ fn(x)]
l<ic<n

Theorem:

The sequence fan), ns 0, 1, ***, for § v 1 is monotone

decreasing in n for all x ¢ X, A sutfficient condition

for this to be tyue for all x and 0 < 6 < 1 is that
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Theorem:
There exists a bounded concave solution f(x) to the

functional equation for 6 =.1,

Charnes and Schroder (1967) develop models and methods
to find optimal tacties in an idealization of antisubmarine
warfare, viewed as a game of pursuit between the hunter~killer
force and a possible submarine. The status of the pursuit at
every mcve t(t = 1, 2, ***) is taken to be one of a finite
number of possible states. A state summarizes the tactical
information available to both players for decision making.
A finite collection of tactical plans (decisions) is associated
with each state. When the players move they each choose a plan
and thereby jointly determinc an intermediste payoff from the
hunted to the hunter and a transition probability distribution
over the states. The objective is to find an optimal strategy
for each player. A strategy is a decision (possibly randomized)
for each state and move, an optimal strategy is one of a minimax
pair for the total expected payoff. These concepts are presented

in terms of a terminating scochastic game (TSG) which may be de-

fined as a game played in a sequence of moves. At each move, the




game is said to be in one of a finite number of states
i=1, 2, *"°y n. 1If the game is in state i (i = 1, 2, ***', n)
and the hunter chooses alternative K, while the hunted chooscs

alternative L, then the payoff from hunted to hunter is aiKL

(K= 1, 2, ***, Mi; L= 1, 2, ***, Ni)'

The choice of alternatives K and L also determines the

transition probabilities:

PinLZO (i,j)=l, 2, **', n
K= 1, 2, +o0, M
L=1,2, ', N
Tl
(i) E PinL <1, allk, L, i
1=1
(ii) aiKL < M, all K, L, i.

Under the above assumptions, the game terminates with probability
1 and the accumulated payoffs received by either player are
bounded. A behavior strategy for either player is &n n=tuple

of probability distributions x = (xl, ey, xn) where X =

1 ...
(xi . s Xy

iy
If the hunter uses a behavior strategy, he chootes the
mixed strategy x; whenever the game is in state i regardless of

what move it is or the manner of arrival at state i. By choosing




a starting state i we obtain an infinite (the number of moves

may not bLe bounded) game Gi(i =1, 2, ***y, n). A terminating
siuchasiic game is defined as a collection G = (Gl, teny, GN).

Let w, denote the value of Gi; the minimax of ita total cxpect-4
de

payoffs, The value of % may be defined tc be the vector

w = (ng ey, Qn). Consider a two-person zero-sum game with
payoff matrix Ai(a) where Ai(a), i=1, ***, n is the Mi X Ni
matrix whose K-Lth element is

n

KL 2 : KL
+ " .
a; . Pl:J aj,
i=1

and a = (r,,+*',a) is an n-vector of real numbers.

l!
Let VAL(B) denote the minimax value of the two-person
zero-sum game with payoff matrix B and let X(B) and Y(B) denote
the sets of optimal mixed strategies for the respective players.

The following theorems characterize the optimal solutions to

the terminating stochastic game.

Theorem 1:
The value of the terminating stochastic game G is the

unique solution w of the nonlinear system of equations

w, = VAL [Ai(w)] i=1, 2, ***, n.

Theorem 2:
The behavior strategies X, y where X = xi[Ai(Q)],
y € yi[Ai(G)] (i=1,2,***, n) are optimal for the first
and second players, respectively, in every game Gi belong

to G,




g Charnes and Schroder then show that the nonlinear

problem can pe replaced by a sequence cf linear programming

problems, Stopping criteria are developed which insure the

desired approximation to @. The preceding results are then -
applied to a problem in antisubmarine warfare. It is shown

that the objective function of the minimization of the expected
duration of the search can be expressed in terms of a terminating
stochastic game. In the event the hunter knows or is willing

to assume certain behavior on the part of the submarine, the -
game becomes ¢ one-person game. In this case, the determination
of the hunters optimal strategy is reduced te solving a dis-
counted Markovian decision process of the type studied by

Howard (1960)., Finally, the authors study a finite terminating
stochastic game which terminates in n moves or a terminal state, g '
whichever occurs first. It is shown that in this case the N |

optimal strategies depend upon the move and are not behavior

strategies.
Norris (1962) considers the two-sided extension of a

one~sided search problem. The search is conducted against |
a conscious evader who is able *to observe the searcher's |
actions and capitalize on any errors he makes. The cvasion

device of moving between looks is treated. The game is zero=

sum and incorporates a fairly general reward structure which

can include discounting. The reward coefficients associated

with this structure, as well as the location of the boxes and
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their detcction urobabilitiee, 2rc kincwi. tu both players.
Good strategies are developed for the players when the game
involves two boxes. In the case of an infinite moving cost,
designated by 6”, exact solutions may be obtained when the
escape probabilities, a; and a,, (the cruplements of the

detection probabilities) satisfy the relationship

for a pair of intergers ny and n%. This relationship is the

necessary condition for an ultimately periodic optimal program

derived by Matula (196u).

In the case of a finite moving cost, designated by G,
the evaders position (2 Box Case) as the search progresses
is described by a probability vector. If the probability
that he is in one box becomes sufficiently high, he should
move from this box with a certain probability. This causes
the probability vector describing his position to be trans-
formed to the nearest boundary of the no-move region. The
searcher's good strategy can be generated by a finite Markov
process. In some states of the process the next look is made
deterministically. In others called mixed states, the next
look is made according to a probability distribution. As
moving costs increase, deterministic looks are made more
frequently, and the situations in which a move is admissable
occur less frequently. In the case of infinite (prohibitive)

moving costs, the searcher makes a random selection from two

PO O

y .




infinite sedarch sequences. Once this choice has been made,
the seAarch process is completely deterministic.

Tn tha Nehox formulaticn of the finite mouving cost game,
the good search strategy cannot be generated by a finite
Markov process. A limited memory approach to finding an
approximation to the good search strategy is suggested for

future research. ITn the game designated G°, no such cost is

incurred by the evader when he moves. As a result, the searcher

cannot gain any inference concerning the evader's position
from his past sequence of unsuccessful looks, and each look

should be made according to the same probability distribution

(this is the staticnary minimax case diseunread by Neuts (1963)).

When the N=box form of G° was considéfed, it is noted that the
good search strategy may be useful when the evader arrives
sometime after the start of the game or leaves. Finally, it
is noted that the results for the ﬁhbox case in which the
position of evader is specified'by a probability wvector known
to the searcher may be useful in studying some one-sided search
problems. )

Johnson (1964) considers fhe foilowing search problem:
Blue chooses a regiocn i (i 5'1; 2, ***, n) in which to hide.
Red selects one of n regions to search; if unsuccessful, he

ig told whether he is too high or too low, and repeats until

he determines the correct region. Detection occurs with

probability one, givén the selection of the region chosen by Blue.

’
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Although such a scenario is mwmmealievic in 2 military couniext,
it may be quite the opposite in an information retrieval
context. Theorems concerning the necessary conditions for
optimality are presented. Optimal strategies are obtained
(trial and error) for n < 1l. For larger problems one has
recourse to linear programming techniques on a digital computer,
Ir {Pj} (j =1, 2, ***, n) is a vector containing the proba-
bilities with which Blue selects the jth region, then it is
shown that P, > P,. Let S, = {Sij} denote the ith strategy
for Red, i.e., Sij equals the number of look when region j is
searched under strategy i. The following theorems pertain to

Red's optimal strategies.

Theorem:

Assume at given stage that Red, playing St has located
Blue within the region k < j < M, and that Si calls for
the next look at a, left of Blue's frequency distribution
on this i1uterval, and if a is too small, next playing at
b to the right of a. Then a necessary condition for the

optimality of S; against {Pj}'is that




Thaeorsm:
At each stage Red should make his guess inside the
middle third of Blue's probability distribution

on the current interval of uncertainty.

Giammo (1963) considers the following problem: Consider
two opposing mobile battle forces that are able to change
position only at fixed time intervals, not necessarily equal.
Each force knows the area in which the other is operating
and is assumed to be efficiently searching thie area for the
enemy's position. Labeling the forces Blue and Red, Giammo
defines R to be the total area of Blue's operating region
and assumes that Red can sea.ch a region of area r dt in a
time interval dt, wheére r is some constant. B and b are
defined in a similar fashion with reference to Red's operating
region and Blue's rate of search, It is assumed that the
Blue force moves periodically every fiy time unifswwith’ﬁhe
first move occurring at random with a uniform probability
density in the time interval 0 < t < tye Each move is con-
sidered to be instantaneous and to terminate with equally
likely probability at any point in its own operating region,
It should be noted that each time Red (Blue) moves, a new
stage of the search starts which is independent of the pre-

ceding stages.




The objective of this paper is to develop expressions
for the probability that Red will .etect Blue without Blue's

having previously detected Red, P_ , and the prokability

r,.

?
that Blue will detert Red withcut Rcd!

U 5 having previously
detected Blue, Pb3r
Define:
Pb(t) = the probability that Blue has discovered
Red before time t,
Pr(t) =  the probability that Red has discovered

Blue before time t.

In these definitions, it is assumed that the searchers are
independent, i.e., that the discovery of Red by Blue does

not interfere with continuation of Red's search and visa-versa.
Given that Pb(t) and Pr(t) represent the integrals of corre--

sponding probability density functions, one can write:

T

Pb(T) = Jf Pb(t)dt,
T

Pr('r) = f pr('t)d't.

(o]

Certainly, one can obtain the probability that Blue will dis~

cover Red before time Tt without Red's having discovered Blue as

T

Pb,r(T) s ./P (1 - Pr(t)] Pb(t)dt,

(@]

-
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and [{or Red

T
PL(T) = j [1 - P ()] p_(L)dt.
The desired parameters are:
pr‘,b = Pl",b(m)’
and
pb,p - Pb,r(m)'
Integration by parts yields
hr,b - f P_ (1) pb('t)d‘t,

(o]

and

Pb,r = / Pb('t) Pr‘(t)d‘t.
O

Giammo then derivesz exact a5 well as approximate expressions

for Pr b and P under the above assumptions concerning the
]

b,r
motion and search structure of the problem.

Koopman (1963) presents some of his original work (Koopman,
1987) in terms of a zero-sum game. He considers the problem
of detecting an enemy unit located at a point x in some region

R with a limited amount of search effort ¢. One is interested

in determining a distribution of random search intensity ¢(x),
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with the provision that

fo(x)dx = ¢, ¢(x) > 0.
R

According to the law of random search (Koopman (1957)), the

probability of detecting the target at x is
1 - e -¢(x),

and therefore the probability of detecting the target when

its probability of besing at x has density p(x) is

P = fp(x) [1 - e'¢(X)] dx.
R

If the searcher assumes that his distribution of effort ¢(x)

is known to the *arget, and the target can then choose his
position (or position density p(x)) to minimize the probability
of detecticn P, then the searcher can select ¢{(x) to achieve
maximum P. Conversely, the target may not know ¢(x) and may
assume that the searcher knows p{x) and selects ¢(x) to maximize

P, In both cases, for ¢(x) = ¢/R, one has

maximum P = minimax P = 1 - e /R,
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In the heterogeneous case in which the "visibility", g(x),

- -l .
-t o hb ok @

ot ion, the prebabliliiy of detection becomes

P = fP(x) [1 - e B(X)0(x) 4,
R

and the constraint on search effort is weighted by position,

i.e.,

./ﬁh(x) ¢(x)dx = &, h(x) ¢(x) > 0,
R

Koopman obtains the following result for this case: The target's

strategy p{(x) is given by p(x) = a h(x)/g(x), and the gearch
density function ¢(x) = b/g(x). The.constants a and b in the

above expressions are determined from

1l h(x) 1.1
z ° f Em dx, and E°3a%
R N

The value of the game is still 1 - e -Q/R.

The case of a moving target is also considered. The
target has to move along a path C from a point x° on a given
curve Ko to a point xl on the given curve Kl’ C passing *hrough
a field R (bounded by the given curves) in which the search is

being conducted. The searcher can choose any ¢(x) subject to

Jf¢(x) dx = ¢, ¢(x) > 0;

&
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and the target can select his curve C, which he follows at
a constant speed. It is shown that thes expression for the

probability of detection is given by

P = P (c, ¢) = 1 ~ exp - J(.¢(x)g(x)ds
[o]

where ds is the arc length, and the integration denotes a
line integral along the path C. Since P(c, ¢) increases or
decreases with gr¢(x)g(x)ds, the problem of minimax can be

stated in terms of this line integral.

t e e B TR b iR L fo b e e

Beltrami (1961) studies a random patrol on a straight
line and gives a rigorous mathematical discussion leading !
to the paradox that the requirement of uniform coverage in
a ‘random patrol where the searcher has fixed speed imposes
the condition of a non-random back and forth patrol. The
following scenario is considered: A search craft S patrols
a linear barrier in some back and forth manner. Using de-
tection gear it has an effective search radius p (definite
range law) which is assumed small in comparison with tne
barrier length. The penetrator P, approaches to within some
distance of the barrier and appraises the patrol pattern of S.
If the patrol is regular, then an intelligent tactic on the
part of P is to coincide its barrier crossing with the moment
in which S will be moving away or is at the extreme distance

from the cross-over point. A random patrol for S is chosen in
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order to completely eliminate any advantage t¢ P; it being
essential that the probability that a given point is covered
in a move by S is as nearly constant as possible. It is
shown that this policy will assure that the maximum penetra-
tion threat of P is minimized.

Dresher (1961) considers two formulations of a recon-
naissance problem. In the first model,.it is assumed that the
attacker and defender have two -strategies each. Blue, the
attacker, wishes to seize a defended enemy position. It is
assumed that he has two courses of action:

(a) Attack with the entire force,

(b) attack with part of his force, leaving the remainder

as reserves and a rear guard.

Let the payoff matrix A be given by

where, for example, a) represents the value to Blue if he
attacks with part of his force and Red defends with hik entire
force,

It is further assumed that the attacker can send out a
detachment to reconnoiter in an attempt to discover the plans
of the defender. In order to defend himself against such
possible action, the defender may take counter measures. The

new game now has 16 strategies for the attacker and 4 for the




69

defender. The matrix for the new game can however, by testing
for dominance, be reduced to a & x 4 matrix. A particular
reconnaissance game is solved by way of illustration.
Dresher's second example deals with the value of recone
naissance information in the context of a bombing attack. It
is assumed that there is an uncertainty concerning the worth
of a target. Such uncertainty may arise from unknown or
partially known results of earlier strikes on the same target.
If the exact worth of the target is discovered through re- 2
connaissance, then it is possible to dispatilch the most efficient é
size attacking force against it. In order for a reconnaissance -
to be successful, at least one reconnaissance aircraft must fly

to the target and return. The following notation is introduced:

e G Vo

B

Military worth of one bomber. {
R = Militéry worth of one reconnaissance aircraft.
T = Military worth of the target.

¢(t) = Probability that the value of the target does not
exceed tv This probability distribution is known
prior to reconnaissance.

r = Number of reconnaissance aircraft sent out prior
to the mission.

b = Number of bombers dispatched to the target during
the mission.,

p = One-way survival probability of bomber and recon-
naissance aircraft between base and target.
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oT = Probable worth of the target after being hit by

[ ]

o

The o

one bomber.

T = Probable worth of the target after being hit by
two bombers.

bject of the attacker is to maximize the net outcome of

the mission, the difference between the target damage and

the aircraft losses.

The payoff, depending upon r and b, is given by

M(r,b) = f t(l-apb) - (l-p2> Bb = (1-p2)Rr de(t).

The optimal solutions are given by
= 1 AP
ré = 1 + P in T
and .
in % | ' If reconnaissance
_ ©eplne reports T.
¢ . |
- 1n %/ If reconnaissance
-pln o does not report. o
[ _
where
P = ~1n(l - p2)
D = - (1-22)8 ,
Plna
¢, = J[ t do(t),
A = Dfln =X ap(2).
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O,

} For these optimal values the payoff is given by

2 [AP - (1-P®)R] - (1-P)Rrt,

ULJ’
H

M(r#,b%) = ¢, - D - DIn

i)

Issacs (1965) discusses extensions of his theory of
differential games to games with incomplete information,
e.g., search games. It is shown that when the hidden objects
are numerous and immobile, the time to find them (payoff !

function) is nearly independent of the searcher's strategy

as long as no effort is wasted re-searching territory already

scouted and the overlook probability is zero. In the case

of search games with mobile hiders, Isaacs conjectures that
S " the details of ." . randomization are unlmportant. but certazn
l basic parameters, such as the hider's speed, are not. He
argues that in either case there appear to be strong grounds

: Y for an approx1mate theory.
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4.0 MISCELLANEQUS TOPICS

problem. A region of the ocean is to be kept under sur-
veillance to determine the probable number of enemy sub-
marines in the region and their locations. It is desired
to estimate additional measures of effectiveness of the
surveillance operation, such as the expected fraction of
submarines in the region being tracked at a given time.

He 1s alzn interested in determining how the above mesasures
depend upon the «apabilities of the various components of
the detection and tracking forces. The following assump-

tions are made:

(a) . Submarines enter the region at a known-rate. It is
also assumed that their time on station is a random

variable with known distribution.
(b) 'Two modes of detection are considered:

(1) Detection at barrier line, the detection process
described by a single probability of detection,

(2) Area search‘detection, the detection cépabilitiea
are described by two search rates, one applies to
submarines not previously detected, the other to
previously detected submarines.

P,

P SO ST TR
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(r) Contant hatwean tha trankern and +the enhmarine ~an
be broken and reacquisition occur, both events are
P described by their respective rates. It is also
agsumed that a contact is passed from a detection
} unit to track unit with probability one in zero time

i units.

In order to characterize the surveillance system, Dobbie i

I' describes the following state space: ; {

- 1. Submarine is being tracked, '
i i
2., Submarine not being tracked, contact has been lost, ;

3. Submarine not detected.

Using renewal-type arguments, Dobbie derives expressions

for . : |

,' (a) The expected number of submarines in the ith

state e
at time t,‘the,expectéd number of submarines in . "+

the region at t, - , : 1

(b) The probability that a submarine in the region is
i in state i at time t. | +

The author then relaxes the assumption that.contacts are

i' passed from detection units to tracking units in zero time i

; with probability one. In addition, the following assumptions
}

are also made:
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(a)

(b)
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Given detection by a barrier unit or by an area
sensor, the detecting unit will attempt to main-
tain contact until a tracking unit arrives in the
vicinity.

Targets can be reacquired either by area search

or by special search., If contact is regained by
special search, it is assumed that tracking will
be accomplished by the detecting unit until trans-
fer is made to a similar unit and during this time,
the rate of losing contact is A.

In this case the expanded state space includes:

(L)

(2)

(3)

(4)

(5)

(6)

(7)

Targets (submarines) tracked by a mobile unit in

the vicinity of the target;

Target previcusly tracked, contact recently lost,
logal search being made to regain tracking contact;

Target previously tracked, new detection recently
made by area search, tracking units enroute to
area or searching in an effort to obtain tracking
contacty

Target previously tracked, search to regain contact
discontinued, no new detectiony

Target not previously tracked, recently detected by
area search, tracking units enrcute;

Target detected by the barrier as it enters the
region, tracking units enroute or searching to ob-
tain tracking contact.

Target not previously tracked and no previcus de-
tection.

W
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As before, Dobbie develops expressions for the probability
that a submarine is in state i at time t. given that it
was in state 6 or 7 at time t = 0 and stays in the region
during (0,t); 4 = 1, 2, «.4y 7.

Koopman (1946) developed the fundamental theory of
target detection for two limited cases. In the one case,
the detection equipment is assumed to sweep or scan at
regular intervals, with the "glimpses" of the target long
enough apart so that the probabllity of detection on one
glimpse is independent of the probability on the preceding
glimpses. In the other case the detector is assumed to lLe
continuous in its action, and it is assumed that there is
a probability vdt of detecting the target in any interval
of time dt., Kimball (1963) observes that actual equipment
in use has detection properties which lle between these
limits., He shows that, in spite of this, actual detection
equipment can be aonsidered as equivalent to a certain
continuously operating detector whose properties are deriv=
able from those of the actual equipment. In addition, he
also considers the problem of holding the target, Assuming
the detection process to be a one-step Markov process,

Kimball notes that it can be described by the matrix

]
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where, e.g., g, is the probability that there is no de-

tection on a given scan if there was no detection on the

previous scan. New parameters r and g are defined as

r = gpp * 810

801

5”‘56;'721‘3
where g is the unconditional probability of detection on
an arbitrary trial and r is a measur= of the lack of cor-
relation between trials. It is shown that if the scanning
frequency is f, the frequency of transitions in either
direction (from the detected to the undetected.op:visa versa)
is

w = frg(l - g) .

Kimball defines two deteators as equivalent if their g and
W parameters are the same. In particular, any detector is
in this sense equivalent to a continuous detector with the
following properties. If the detector is in the "undetecting"
state, the probability that it begins to detect in any in-

terval, dt, is ydt, and if the detector is in the "detecting"

3
i
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A
state, it has a probability of becoming "undetected" equal
! - to dt. The proper values of B and y are
| 8 =4,
_ W
| YiT-g ;

, Kimball forms the following model of tracking: The entire
system, detector plus operator, can be in any one of four

| states:

(1) Detector off, target not tracked; i r
(2) Detector on, target not tracked;
(3) Detector on, target tracked;

(4) Detector off, target tracked.

[ it is assumed that the behavior of the detector and the

b operater can be modeled in a continous fashion. Let

B R —

Adt = probability of a transition in dt from state
2 to state 3, and {
udt = probability of a transition in dt from state 4

to state 1.

] The state diagram is given by
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i Target Not
8 Tracked

Target Tracked

Detector Detector
Off On
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The steady state probabilities of being in the four states

are derived in terms of vy, 8, H, and A, as well as the i

frequencies with which both the tracking and detection phases : {

start and stop. éf k
The problem of the target visibility changing over time f

has been formulated by Bonder (1969) and Disney (1969). if

- Bonder considered the situation in which the targetiand the - fféi a

searcher (detector) may not be continuously visible during - 4

the period of time in which the searcher is examining the 32 | J

subregion containing the target. The searcher has a de- ‘l i *

tection capability only when the target is visible. The )

. M o G

author considered the following situations:

(a) The target may be visible to the searchers for
: the entire search interval with some known

e G simptirell + AR

probability p, 'l

| (b) The target may be visible at the start of the |
T search period, the length of the visible period

, being a random variable with known probability
) density function, and noi reappear,
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(¢) A single period of visibility may be exhibited
starting at some random time during the search
interval and lasting a random amount of time.

In each of these cases, the probability density func-
tions for the time until the first detection, the time spent
searching the area until a fixed number of detections occur,
and the time spent searching the total area are derived.

Disney characterized the visibility process in which
the target alternates between visible and invisible states
as an alternating renewal process. The trarsition matrix

for this process is

0 flSt)
fz(t)r- 0

where,fl(t) is the probability density function for the

time in the visible state and f,(t) the probability denaity‘

funetion for the time in the invisible state.

Employing some renewal theory arguments, the author
obtained, among other things,

(a) m,(t), the density function for the probability

that the target is visible at time t,

(b) for a fixed time interval of length t,, the dis-

tribution of
(1) the number of times the target is visible,

(2) the total time of visibility.
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Analysis of interactions between the visibility and
detection processes represents an important extenaion of
the scope of knowledge in search theory related to the
results concerning the statiorary target., Physically,
the structure of their interactions can be considered as
a model in which the search environment acts to aid the
target, e.g., the terrain, folliage, etc., common to the
subregion in which the target is operating, or, in the

ASW context, the existence of termal barriers, and other

local phenomena which tend to increase (and decrease) the

_level of concealment of the target over ‘tifie. ~If the

gituation in which a single interval of visibilify exists,

the probability distribution of the length of the visible

- period may be interpreted as the time required for the |

hunted to become aware of the hunter's presence., Multiple

periods of visibility may reflect the situation in which

‘the enemy periodically activates some form of sensing equip-

ment which makes him vulnerable to detection by the searcher.

Danskin (1962a) makes a study of the optimum distri-

bution of aerial reconnaissance effort against land targets

in the presence of decoys. The model considered is one in

which the reconnoitering forces allocate effort "among

various regions, their objective being the location of the

targets, assuming the side being reconnoitered is passive.

o —
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The information function of communication theory is chosen

as the measure of effectivenesa. That is, the information

of a reconnaissance is defined to be the change in the
uncerlainty of the region resulting from that reconnaissance.
For each of the (KO) regions, one has an information function
IK(x), where x is the level of reconnaissance. The alloca-
tion problem is stated as: Given X units of reconnaissance
effort to distribute among the Ko regions,.how shall this be
done 80 as to maximize the information?

One wishes to maximize

K
g; I (Xy)

The_éolution to the'probiem>depends eﬁfirely on theﬂforﬁ

of the fdnctions IK(x). Under the most realistic assumptions
concerning the detection.probabilities associated with aerial
reconnaiésance, the author is unable to determine the behavior
of the second derivative of I, (x) and thus the form of the
objective function, In Part II of the two-part paper,

Danskin (1962b) considers the two-sided reconnaissance

e ———
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problem, in which the side being reconnoitered seeks to
minimize tha information (maximize the counfusion) obtained
by the reconnoiterer, whiike maintaining at least a certain
minimum acceptable threat with a fixed budget. This problem
formulated as a zero-sum, two-person game, is solved for
a special case (fixed equipmant) and it is shown that there
exists a solution in mixed strategies for the general use.
Smallwood (1965) considers a model for the placement
of n detection stations for optimum coverage of an arbitrary
area. The stations are assumed to be identical and to
have a probability of detectioa that is a function only of
the distance between the station and the event to be detecteqd.
Furthermore, stations are assumed to qperateﬁinddpéndently‘
of-eaéh.other. 'It is also assumed that the eneny has '
complete knowledge of the station mocatidba“andrbffeefiveﬁeﬁs
and is inferested.qﬁly’in eluding detection by the deteétiqn.

stations. The situation is reduced to the minimax problem.

" of placing the stations so that the maximum probability of -

not“detecting an enemy event is minimized. .Necessary con-
dition§ for the optimal locations are given, and a hill
climbing interative technique based on these conditions is
described in some detail, The technique is applied to the
problem of the location of detection stations within the

United States and the Soviet Union.
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Pollock (1969) peints out that there has beaen a
¥ tc model the ihzee phases oif a general surveillance
operation (search, detection, and ensuing action) separately,
the ocutput parameters of one such model are often used as
the inputs to another. He considers some of the interfaces
between these phases and presents some examples of the
relation between search, detection, and decisioﬁ theories
involving false alarms, continudus surveillance, localization,
and the selection of appropriate measures of effectiveness.
W. Edwards (1962) notes that the development of a
dynamic decision theory will be central to the expansion of

research on human decision problems. A taxonomy of decision

 problems is presented, most require. a.dynamic theory in

which the decision-maker is assumed to make a sequence of

decisions, basing decision n + 1 on what he learned from

decision n and:its congequences. The relevance of the

mathematidai developments in dynaﬁiclﬁrcgramming and Bayesian
statistics to dynamic decision theory is examined.

Along these lines,:Rapoport (1966) considers a dynamic
proéfamming model of a controller, i.e., a dynamic decision-
maker, who can actively manipulate the environment by his
decisions. An experiment is described in which subjects

were given dynamic decision-making tasks, the results fit

R ST —
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well the analytic solution obtained from the dynamic
programming model.

Smallwood (1966) notes that in many practical situ-
ations the discount factor for future rewards and costs
is not known precisely. The dependence of the optimum
policy on the discount factor is often noted in the model-
ing of these problems. He discusses the dependence of the
optimum policy on the discount factor for the class of
finite-state, time-invariant, Markov models. A procedure
is developed for finding the value of the discount factor
for which the decision-midker is indifferent between two
policies. The procedure is extended o a discussion of how
one can find the completeldescription of the optimum policy

regions oVer'ény rangé of the discount factor,
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5.0 AREAS FGR FUTURE RESEARCH

Table 1 is an attempt at summarizing the current
0 "slate of the art" in search and reconnaissance theory
(at least in subjects relevant to the goals of this report).
The numbered entries refer to the papers in the bibliegraphy

given in Chapter 6.0. No attempt was made to enumerate

all the papers in a given category, but only to indicate
i that the area had been treated in the literature.
Examination of Table 1 clearly reveals areas in
which little or no research activity has been devoted and

which are considered important'topics for future research,

These are briefly noted below along with some areas suggested

3 )}' by Pollock (1969) and Dobbie (1963),

a 1. Interaction Between Detection and Vieibility Processse.
; r _ _"The table suggeSts_that the visibility problem as
defined by Bonder (1969) and Disney (1969) has not been

o treated. As noted in the text, the visibility process has

been modeled as follows:

(a) The target may be visible to 'the searcher for
l the entire search interval with some known
' probability p.

’ (b) The target may be visible at the start of the
search periocd, the length of the visible period

z being a random variable with known probability
density function, and not reappear.
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A single period of visibility may be exhibited
starting at some random time during the searoh
interval and lasting a random amount of time.

The target may exhibit alternating periods of
visibility and invisibility, the durations of each
being random variables.

These forms mav interact with all modes of detection and

targets, thus giving rise to many research possibilities.

This area is currently being studied extensively in thé SRL

under this ONR contract.

2, Non-Stationary Targete

(a)

“(e)

(d)

te)

(£)

. precisely,

(b) .

Target motion independent of position and known

Target motion independent of. position and drawn
at random from a populatlon known to the searcher.

Target motion dependent upon p031tion and known
precxsély to the searcher. o S

Target mctlon drawn randomly from a knewn popula-

tion which 15 a function of target pOSltlon.

Target motion chosen ‘in advance by the evader from
a probability dlstrlbutlon known to the searcher.

Evader chooses motions, subject to limitations
known partially to the searcher, throughout the
search as he obtains information on the past activ-
ities and location of searcher.
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3., Structufe and Capabilities of Operational Deteéoators
Although the descrlpiion ol assumpilons regarding 2

detectovs given in Section 1.2 differentiated between : :
detectors that had single- andmmuitiple-scan capatilities,

this difference is not reflected in the diagram. wWith the i
exception of Kimball's paper (1963), all ressarchipapers
considered in this literature review take as given the |
capabilities of the detector and do not distinguish single- é
scan versus multiple-scan effects, Research is needed in aa
this area to understand the behavior of operationally use- [
ful devices, e.g., the effect of multiple scans, independence '

between successive looks, etc.

4,  Optimization criteria will, in general, depend upon -
the objective of the operation;' If'additional action is
to be taken after detection, then neither the maximdzation
of the probability of detection nor the minimization of the i
expected search time may be optimal f§r the combined opera-

tion. Research shduld be devoted to the structuring of ' ey
the total activity, which includes search, détection, track,

and ensuing action, before selecting the optimization cri-

teria., For example, search activity can readily be inter-

faced with the combat activity which results from mutual

detection.
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5. The output of many of the optimization seirch studies

has been the fimad amount of +im

~ daa
- - ITL ™

¢ Search in a box. Une
might instead consider the likely possibility that the
&ctual search time will be a random variable and examine
its effect on the optimal policy. It is not unlikely that
searchers may have various modes of operation, each of

which has a characteristic distribution of search time as

well as associated Type I and II errors.

8. The likelihood that searchers will not (or cannot)
follow optimal seavch procedures suggests research be devoted
to the problem of converting theoretical results into

practical rules of application.

g 7 A....l—-———a——-n—;—tA e A e e




i

90

6.0 BIBLIOGRAPHY

General Discussion

1'

Dobbie, J. M., "A Survey of Search Theory," Journal of

Operations Research, Vol. 16:3, May-June 1968,
pp' - .

Edwards, W., "Dynamic Decision Theory and Probabilistic
Information Proceasing”, Human Factora. Vol IV, 1962.

e e bt et

4,

10.

Enslow, P. H. Jr., "A Bibliography of Search Thecry

and Reconnaissance Theory Literature," Naval Res, Log.

Quart. 13, 177-202 (1966).

Koopman, Bernard Osgood, "Search and Screening,"
Operations Evaluation Group, O0ffice of the Chief of
Naval Operations, Washington, D C., OEG Report No. 56
(ATI 64 627), 172 pp., lOuE.

Langendorf, R. M., "The Philosophy of the General

Problem of Search and Detection," Rome Air Development
 Center, AKDC,.USAF, -Gpriffin. -AFB; - Rome, “New' York, "

RADC-Tiv-59-130 (AD 213°583), 7. PPy May 1859,

: Morse, Phllip M. and George E. Klmball, Methods of"
- Operations Research, The Massachusetts Institute of

‘ Tecﬁnology ?ress, aambridge, Massachusettl, 1951._ s

:'Marschak, J., "Economzcs of anuirlng, Communlcatin
‘Deciding," (Richard.T. Ely Lecture)‘Amerlcan Ecoromie . -

Review, Papers and Proceedings, 58, No., -18,
May I§68. R
Monroe, A Ty "A Short uurvey of the 0 en therature
on Search and an Introduction 'to ‘the Kinematics of .
Encounter," TRW oystems Group, 7311~ SOUN—TU-ODU.
September 10, 1965.°

Pollock, S.M., "Search, Detection and Subsequent
Action: Somz Problems on the Interfaces," Unpublished
paper, (1969,.

Rapocport, A., "Human Control in a Decision Task,

Behav. oCl.,VOl 1I, January 1366.

it

Sl BN e (e

ot B me
———

e

i Lol o

P 1 Yol e

[P SN




91

B. Measures of Performance

$a
(X}

12.

13.

14,

15.

- 18,

17,

18,

Barlow, K., "Probability Problems in Detecting Missile
Salvos," Electronic Defense Laboratories, Sylvania
Electric Products, Inc., Mountain View, California,
EDL-M257 (AD 255 667), 31 pp., 12 February 1960,

Enslow, P. H. Jr., "Observation Systems Employing
Periodic Sampling," Report SEL-65-038 (TR No. 1906-1),
Stanford Electronics Laboratories, Stanford, California,
Junhe 1965,

Fine, Nathan J. and Frank W. Lamb, "A Relation Between
the Average Range of Direct Approach and Sweep Width,"
Operations Evaluation Group, O0ffice of the Chiaf of
Naval Operations, Waslington, D.C., OEG Study No. 325
(ATI 28 B29), 14 pp., 24 June 1947,

Kobzarev, U. B. and A, E. Basharinov, "On the Effective-
nesg of Search Algorithms Eased on Samples of Contrelled
Duration," Radiotekhnika i Electronika, VI:9, pp. 1lu4ll-
1419, September 1861, translated by L. £. Brennen,

Rand Corporation, KM-2953-PR (AD 270 127), 18 PP:»

December 1961.

Kdopman, B, 0., "The Measurement of Information,"

‘Memorandum for Directo:, QEG, 5 December 1952.

Koopman, B. 0., "Search and InforﬁationhTheoby,"-
presented at the 32nd National Meeting of.the

Operdtions’ Research ‘Society of America, hfiago
Illinois, November 1967, S h D TRER

A

1

Mela, Donald F., "Information Theorffé,ﬁ**ramﬁh Theory

as Special Cases of Decision Theory," (r.u. Res. 9,
907-909 (1961). \ ’ EERAES S

Novosad, Robert S., "Search Problems and Information
Theory," Operations Research Department, Martin-Denver,
Colorado, Working Paper #64, 5 June 1961.

L i st ook, R

I- P . it e S s .




92

C. Allccation of Effort

4]

19,
20,

21'

22.
23,
o,

" 95,

26,

27.

28,

29,

ary Foini Target

Arkin, V.I., "A Problem of Optimum Distribution of
Search Effort," Theory of Probability and its Appli-
cations, 9, 159-T60 Z¥§555.

Arkin, V.I., "Uniformly Optimal Strategies in Search
grog%:ms.g Theor¥ of Probability and its Applications,
[ "68 . N

Bellman, R., Kalaba, R., and Middleton, D., "Dynamic
Programming, Sequential Estimation and Sequential

Detection Processes, Nat. Acad. Sci. Proec., Vol.XLVII,
March 1961, pp. 338=-3GT,

Blachman, Nelson, "Prolegomena to Optimum Discrete
Search Procedures,”" Naval Res. Log. Quart. 6, 273-281
(1959).

Blachman, Nelson and Frank Proschan, "Optimum Search
for Objects Having Unknown Arrival Times," Opns. Res.
7,5, 625-638 (1959%). ' -

BléCk,fWiiiiam Lawrence, "Séquential Search," Depart-

" ment of Electrical Engineering, MIT, Cambridge, Mass.,
‘Master of Science Thesis, June 1962,

Black, William Lawrence, "Discrete Sequential Search",

InformatiQn and Control, 8, 152-162, (1965).

Bright, W.E., "A Particular Class of Generalized
Search Problems,"”" Operations Research, Vol. II,
February 195&,

Charhes;'A. and W. W. Cooper, "The Theory of Search:
Optimum Distribution of Search Effort," Management Sci.
5, 4L4-50 (1958).

. 3 " 15
Chew., M., Jr., "A Sequential Search Procedure, Anna
el Pematical Statistics, 38, 49u-502 (1867). —

i i d
Chu, Wesley W., "Optimal Adaptive Search," Stanfor
Eleétronics Lagoratory, Systems Theory Laboratory,
TR-6252~1 (September 1966).

o mad

st 2 e

R R



30-

31.

32,

33.

3u,

3s.

36.

a7.

38.

39,

Lo,

41,

93

Danskin, John M., "On Koopman's Addition Theorem in
Search Theory," Institute of Naval Studies, Cambridge,
Massachusetts, 1964 (to be published in Opns. Res,,
according to Enslow's bibliography).

Danskin, John M., "Thec Theory of Max-Min, with
Applications," Institute of Naval Studies, Franklin
Ingtitute, Cambridge, Massachugetts, 1965 (to be pub-
lished in the Journal of the Society of Industrial and
Applied Mathematics).

Danskin, John M., "A Max-Min Problem Associated wifh
Strategic Deterrence Theory," Institute of Naval Studies,
Franklin Institute, Cambridge, Massachusetts, 1965 (to
be published in the Naval Research Logistics Quarterly).

de Guenin, Jacques, "Optimum Distribution of Effort: p
An Extension of the Koopman Basic Thaory," Opns. Res.
9, 1-7 (1961).

de Guenin, M. J., "Theorie de la Recherche et ;
Prospection des Gisements," NATO Conference on the :

Application of Operational Research to the Search and
Detection of Submarines, Vol. I, J. M. Dobbie and

+ R. Lindsey (eds, s PP. 57-73, November 1963, _ » 'v!“

Derman, C., "On Sequential Decisinns and Markov Chains,"

Manag. Sci., 19, 16-24, (1962), - - | )

Derman, C., "On Minimax Survellance Schedules", Nav. . ‘#
Res. Quart., Vol. VIII, December 1961. . ‘ co

* , : o
Dobbie, James M., "Search Theory: A Sequential
Approach," Naval Res. Log. Quart. 10, 323-334 (1963).

Dobbie, James M., "Some Problems in Search Theony," ' ﬁ
submitted for publication in Naval Res. Log. Quart,

Engel, J. H., "Use of Clustering in Mineralogical and
Other Surveys," Proc. of the First International Confer-

ence on Operations Research, Oxford, 1957, The English
Universities Fress, PP. 176-192,
Firstman, Sidney I. and Brian Gluss, "Search Rules for

Automatic Fault Detection," Rand Corporation, Santa
Monica, California, RM-2514, 31 PP.» 15 January 1960.

Franck, Wallace, "An Optimal Search Problem," S5.I.A.M.
Rev, 7, 503-512 (1965),




- = -

k2.

k3.

uy,

b5,

46,

W7,

L8,

Lg.

50,

51.

52,

53.

5k,

94

Giammo, T. P., "On the Probability of Success in
Sudden Death Search with Intermittent Moves Confined
to a Finite Area," S,I1.A.M. Rev,, Vol. 5:1, pp. 41-51,
January 1963.

Gilbert, E. N,, "Optimal Search Strategies," J. Soc.
Indust. Appl. Math. 7, 413-424 (1959).

Gluss, Brian, "Approximately Optimal One-Dimensional
Search Policies in Which Search Costs Vary Through
Time," Nineteenth National Meeting of the ORSA (abstract
in Bulletin of the ORSA, Suppl. 1, Opns. Res. 9, 1861).
Paper revised January 1961, 11 pp.

Gluss, Brian, "An Optimum Policy for Detecting a Fault
in a Complex System," QOpns. Res. 7, 468~477 (19569).

Gumacos, Constantine, "Analysis of an Optimum Sync
Search Procedure," IEEE Trans. on Communications
Systems, Cs-11, 89-S9 (1963).

Kadane, J., "Discrete Search and the Neyman-Pearson
Lemma," Journal of Mathematical Analysis and Appli-
catlons,"—7?T"T3F:TVT-TT§F§TT-_-——-JL—_—-

Karchere, Alvin, and Francis P. Hueber, "Combat-
Preblems, Weapons Systems, and-the -Theory.of

Allocation," " Journal of Operations Research, Vol. 1:5,
Pp. 286=302, November o8, .

Klein, M., "A Note on Sequential Search;""NSQAl

' Research Logistics Quarterly, 15, 469-474 (TBEB)Y.

Kisi, T., "On an Optimal-Searching;Schedule;"
Journal of the Operations Research Society of
Jfa.Ean’ 8. Na., » - e !‘uar‘y .

Koopman, B. 0., "The Theory of Search: III. The
Optimum Distribution of Searching Effort," Opns. Res.
5, 613-626 (1957),

McDonald, A. M. C.. J. 6. Fergusson, and R. W. Elliott,
"Theory of Search," In Some Techniques of Operational
Research, English Universities Press, London, Chapter

8, PP Ty3-163, 1962.

MacQueen, J. and R, G, Miller, Jr., "Optimal Persistence

Policies," Operations Research, Vol. B:3, pp. 362-380,
May-June 1960,

Matula, David, "A Periodic Optimal Search," American
Math., Monthly 71, 15-21 (1964).

IR Y e S DM et e S o g T A M P

i R

PG s USRI

- A2

DI = PP P 1N

L

P et # mi Bmma e A




L)

55,

56,

87'

58.

5¢.

60,

61.

82,

6‘3'-

bh,

65,

68.

67l

95

Miehle, W., "Numerical Solution of the Problem of
Optimal Distribution of Effort," Operations Resgearch,
2y B33-440 (1954).

Pollock, S.M.. "A Simnle Madel =f Szarch for a Moving
Target," Unpublished papeny . (1969}

Polliock, Stephen M., "Optimal Sequential Strategies

for Two Region Search When Effort is Quantized,"
Operations Research Center, MIT, Cambriqdge, Massachusetts,
Interim Tech. Report No. 14 (AD 238 662), 67 pp., May
19860,

Polleock, Stephen M., "Sequential Search and Detection,"
Operations Research Center, MIT, Cambridge, Massachusetts,
Tech, Report No. § [Contract Nonr-3983(06)1, 131 pp.,

May 1964,

Posner, Edward C., "Optimal Search Procedures," IEEE
Trans. on Information Theory, IT-9, 15§7-160 (19637,

Potter, N. S., "Programmed Search in Adaptive Systems,"

IRE Trans, on Mil, Elec. Mil-5:4 « 362-369, October
ToaT> ’ » PP ’

Ross, Sheldon M,, "A Problem in Optimal Segvch;&nd*srdp,""“

- Technical Report #113, Department of OR/Statigtics,

Stanford University.

Séﬁdeiihs,,M.,‘"On an Optimal Search Prbcedﬁre'.iAm.
Math M., Vol. LXVIT, February 1961, . - . SR

:Scott,fKénﬁeth Robert, "Optimal Mulfi-Region Diécretej'

Search Under Linear Search Cost," Department of Electrical

. Engineering, MIT, Cambridge, Maséaohusetts? Magter of

Scierice, Thesis, 18 January 1963,

Smallwood, R.D., "Optimum Poliey Regioné_for Markov=
Processes with Discounting";_OEerations Research,

VGl. XIV, Jllly, Aug- 1966, ppl W - .

Smith, Mark W., "An Optimum Discrete Space Sequential
Search Procedure which Considers False Alarm and False

Dismissal Instrument Errors," Technical Report No. 35,
Department of Statistics, Southern Methodist University,

Staroverov, 0., "On a Searching Problem " Theory of
Propability and Its Applications, 8, 19&-1@7 IISE"




68.

69.

70.

71.

72,

Two-

73

74,

75,

76.

77,

96

Large Staticnary Target

Bellman, R., "Problem €3-9, an Optimal Search," S.I.A.M.

Rav. B. 274 (19AR3).

Gluss, Brian, "An Alternative Solution to the 'Lost at
Sea' Problem," Naval Res. Log. Quart. 8, 117-121 (1961).

Gluss, Brian, "The Minimax Path in a Search for a
Circle in a Plane,”" Naval Res, Log. Quart. 8, 357-360
(1961).

Gross, 0., "A Search Problem Due to Bellman," Rand
Corporation, RM-1603 (AD 87 962), 8 pp., 12 September
1955,

Isbell, J. R., "An Optimal Search Pattern,'" Naval Res,
Log. Quart. U4, 357-359 (1957),

Moving Point Target

Chapters 7, 8, and 8 of Koopman.

.Sided Search

Chapter 5 of Morse and Kimball

Agin, N.I., et al,, "The Application of Game Theoryh
to ASW Detection Problems," Mathematice, Princeton,
New Jerspy, September 30, 1967.

4Arno;d, Robert D., "Avoidance in One Dimension: a
Continuous-Matrix Game," Operations Evaluation Group,
Office of the Chief of Naval Operations, Washington,

D.C., OEG IRM~-10 (AD 277 843), 14 pp., 11 JanuaryAIQSz.'

Bellman, R., Dynamic Programming, Princton Univ. Preés,
Princton, New Jersey, 1957, Ch. X.

§elzer, R. L., "Sclutions of a Special Reconnaissahce
Gam?," and Corporation, 1700 Main Street, Santa Monica,
California, RM-203, 23 pp.,10 August 1949,

Blackwell, David, "A Representation Problem," Proa, of
the American Math. Soc. 5, 283-287 (1y5u), .

B Bl oo

LR TRIPR o N




78.

79,

83.

86.

.l8'7°

88,

89,

90,

‘Proceedings, pp. 40-58, 1963.

Neuts, Marcel F., "A ﬂultzstage Search Game," J S.I.A;Mvw

97

Braum, Joseph, "A 2~ Player N-Rsgion Search Game,"
Operations Evaluation Group, Office of the Chief of

Naval Opapatisne, Washingten, D.C., OZG IRM=31

(AD 402 g14), 21 PPy January 17, 1963,

Charnes, A. and K. Schroder, "On S”me Stochastic
Tactical Anti-submarine Games," Nav. Res. Logist.
Quart., Vol. 14, No. 3 (1967) .

Danskin, J.M., "A Helicopter Versus Submarine Se:.rch
Game," Operatlons Research, i6, 509~-517, May-June l9&¢.

Dresher, Melen, Games of Strate - Theory and
Application, Prentice-Hall, Englewood CIIE¥S, New

Jersey, pp. 61-68, 175~-178, 1961,

Dubins, L. E,, "A Discrete Evasion Game,'" Annals of .
Mathematics Studies; No. 39, "Contributions to the
Theory of Games," Vol, IIl, M. Dresher, A. W. Tucker,
and P. Wolfe (eds.), Princaton University Pregs,
Princeton, New Jersey, pp. 231-%#5, 19§87,

Giammo, T. P., "On the Probability of Success in a
Sudden Search w1th Intermittent Moves Confined to a
Flnlte Area," S I A M. Rev. 5y MN1- 51 (1963). , AHJ

Isaacs,(Rufus. leferentlal Games, Wiley, New York, .
pp. 336-337, 1985, o e

Johnson, Selmer M.y "A .Search Game," Advances An
Game Theory, M. Dresher, L. §. Shapley,’ana AW
ucker (eds.), Pr;nceton Unlver51ty Press, Prlnceton,
New Jerseyﬁ pp.' "3 48,‘1964. o

Koopman, B..O,, "Hide aiid Seek’ Games," NATO Conference

1,

11, 502- 507 (lq63)

Norris, R‘~C., "btudles in Search for a Conscious

Evader," Lincoln Laboratory, MI‘i', Cambridge, Massachusetts,
Tech.: Report No. 279 (AD 294 832), 134 pp., 14 September

1962,

Sherman, Seymour, "Total Reconnaissance with Total
Tountermeasures," Rand Corporation, 1700 Main Street,.

Santa Monica, California, RM-202, 18 pp., 5 August 1949,

Smal lwood, R., "Minimax Deteation Stat;on Placement K
0peratlons Reseaich, 13, 632-646, 1968§.




—~—~— - — s

e~ = o~ e

El

gl'

98

NATO Conference or the Appllcation of Operational

Research to the search and Detection of submarines, Vol., I, °

obbie an . R, Lindsey (eds.), November 63

{s} Dlavilloi, Capi. de C., “Un Frobleme de Recherche
sur Zone," pp. 90-102.
(b) Heudedine, Asp. J., "Etude sur L'Efficacite d'un

Barrage Anti-sous-Marin Constitue,”" pp. 103-120.
(c) Beltrami, E. J., "The Density of Coverage by Random
Patrols,” pp. 131-1u48.

Miscellanepus

92'
93,
gk,

95,
26.

97.

98,

99,

100,

;ééﬁder, S., "Preliminary Modeling of Reconnaissance

in Force," Systers Research Laboratory, The University
of Michigan, SRL 1957 WP 6&-10, 4 November 1968

Bram, J. and H. Weingarten, "Estimation of Binomial
Parameters From Search Data," Center for Naval Analysis,
Washington, D.C., Research Contribution No. 3, 7 pp..

5 May 1364,

Bussgang, J.J. and D. Middleton; "Optimum Sequential

- Detection.of Signals in Noise," TRE Transactions on
Infopmation Theory; IT-1 (1955)4 - .

‘ Dangkin, John M., "A'Theory of Reconnaissance: I,"

Opns. Res. 10, 285-299 (19626).

Danskin, John M,, "A Theorg'of Reconnaisgdance: II,"
Opns., Res. 10, 300-30% (1962b). :

Disney, R., ?A,Probabiﬁity Structure for the Inter-

visibility Process," Systems Research Laboratory, The
University of Michigan, SRL 1957 WP 68-11, 8 November
1968. T '

5obbie, James M., "Surveillance of a Region by

Detection and Tracking Operations," Opns. Res. 12,
379394 (1964). :

Dobbie, James M., '"Transfer of Detection Contacts to
Tracking Contacts in Surveillance," Opns. Res. 1h,
791-800 (1966).

Dobbie, James M., "Solution of Sumc Surveillance-
Evasion Problems by Methods of Ditferential Games,"
The Fourth 1FORS Conference on Uperational Research,

Preprints of the Proceedings, rp. 3-39 to 3-59,

Boston, 14966,




mar o

[R.

- - - e T

101,

lo2.

103,

104,

105,

106.

107,

108.

1089.

110,

111.

99

Enslow, P.H., Jr., "Observation Systems Employing
Periodic Sampling," Stanford Electronics Laboratorvy,
Technical Report No. 1906-1 (1965).

Hershman, R, L. and Lichtenstein, "Detection and
Localization: An Extension of the Theory of Signal

Detectability," Journal of the Acoustical Socisty of
America, 42, U4E-452 (1967). )

Howard, R, A. (ed), "Special Issue on Decision
Analysis)" IEEE Trans. on Systems Sciences and

Cybernetizs, S5C=-F (19G8).

Howard, R. A., Dynamic Programming and Markov Processes,
M.I.T, Press, Cambridge, Massachusettes, (1960),

Hunt, J. A., "The Optimization of Satellite Reconnaissance
by the Application of Dynamic Programming Techniques,"
MITRE Corporation, Bedford, Massachusetts, ESD-TDR-63-168
(AD 402 810), 9 pp., April 1963,

Kimball, G. E., "Detection and Tracking as a Markov
Process," NATO Conference on the-Application of" '
Operational Research toc the search and Detection of
§RB"’* VoI, I 74-89, 1e63.

u mar'lnes, oL, 9 ppo - [ *

Kimball, G, E., "Surveillance Guided Search,"
presented at the 32nd National Meeting of the
Operations Research Society of America, Chicago,
Illinois, November 1967.

Middleton, D. and D. VanMeter, "Detection and Eﬁtractiﬁn
of Signals from Noise from the Poini of View of Statistical
Decision Theory," Society for Industrial and Applied

Mathematics Journal on Applie athematics, 3, -253,

Renyi, A., "On the Theory of Random Search," Bulletin
of the Mathematical Society, November 1965.

Roderburg, T. K., "A Study of Efficient Decision Rules
for Uniformly Scanning Detection Systems," MIT Operations
Research Center, Technical Report No. 6,(May 1964,

%elin, Ivan, Detection Theory, The RAND Corp., R-U36~PR,
1965).




1o00

112. Shapiro, E. S., "The Probability of Successful Search
for the Radioactive Pool Resulting from Nuclear Deto-

113.

114,

115,

nation in the Ocean, Phase I: Determination of the

Optimal Ayus

t0 ha Seanchad " Mzyal Badiclcgicsl

Defense Laboratory, USNRDL-TR-67-76, July 12, 1967.

Stone, L.D. and M. Snyder, "Influence of System
Parameters on Optimal Tacties and Effectiveness

in Deep Submerged Search," Daniel H. Wagner Assgoc.,
Paoli, Pa. May 1968.

SwetB, J- A. y

(ed), S8ignal Detection and Recognition
by Human Observers, Uoﬁn WiIey 4 §ons. N.v., .

Unekis, R., Pursuit, New American Library of World

Literature,

Tnc., New York (Fiction).

ot e




Comtucoma

fecuMl

—

DOCUMENT COKTROL DATA- R G D W
ol ahatsnet snd indering annvintion miat he aninred when e averall ¢

160, REPORNTY SECURITY CLASHIPICATION

Unclcssified
I

rRecumity cinaaitliention ol iite
1. QRIGINA TING AC TIVEIEY [Corporste

o)

SYSTEMS RESEARCH LABORATORY
Deparcient of Tnduatyial Pas

The Univeraity of M*chigan ©
3, REROAT TiTLE

A REVIEW OF SEARCH AND RECONNAISSANCE THEORY LITERATURE

}A

4. DRICMI® TIVE NOTRS (Tyes cf tepart and inghinive dates)
Technical Report
IV avTaae it (el um'E' s MIGH® 1AITTRT, Tasi name}

Michael L. Moore

i‘n'm 74, TOTAL NO. OF PAGLS 5. NO. OF REFS
} January 1970 . 100 115
{38, CANTRACY OK GRANT NO. $2. CRIGINATOR'S AEPONT NUMBERIS)
N00014-67-A=0181-0012
b PROJEL T NO. SRL 2147 TR 70-1
RF 018-02-06
[ 'T—Wl-_-v_lv NO(S) [Any other numbers that may be asslgned
NR 274-098 inlare
)

10. ISTYRIBUTION STATEMENT
"This document has been approved for public telease and aala. its diltribution is

unlimited."
Himﬁl V2. SRONSORING MILITARY ACYIVITY
This review was performed by Michael L. Office of Naval Research (Code 462)

Mcore, under the direction of Seth Bonder,| Department of the Navy

BifeCtO;l Kstﬁzsliesearch Labo;atory, The Washirgton. D, C. 20360

’ResearchAbeing performed. by the Systems Research Laboratory (SRL) undar contract
number N00014-67-A-0181-0012 with the Office of Naval Research is concerned with the
development of more generalized mathematical structures of military processes. Empha-
sis has been directed to the modeling of combat processes and the development of
associated allocation strategies.

It was thought that many of the existing search and reconnaissance theories would
be useful for predicting the amount of intelligence-gathering capability possessed by
a tactical unit. A thorough literature review in this area, however, indicated that
existing theories are less than useful for this purpose.. Most of the research efforts
have been devoted to the development of strategies for the optimal allocation of search
effort and little to the development of descriptive models of intelligence-gathering
processes.

The purpose of this interium technical report is to present the results of the
literature review, both as a base for our research and to indicate fruitful areas of
research for other investigators. Principal results in the field and the techniques
used Iin attaining them are presented in an annotated bibliography. A comprehensive
bibliography, organized under subject classifications, is included. Finally, some
relevent areas for future research are described.{

DD /3*..1473 ——— T

f




